Investigating Practical Linear Temporal Difference Learning

نویسندگان

  • Adam M. White
  • Martha White
چکیده

Off-policy reinforcement learning has many applications including: learning from demonstration, learning multiple goal seeking policies in parallel, and representing predictive knowledge. Recently there has been an proliferation of new policyevaluation algorithms that fill a longstanding algorithmic void in reinforcement learning: combining robustness to offpolicy sampling, function approximation, linear complexity, and temporal difference (TD) updates. This paper contains two main contributions. First, we derive two new hybrid TD policy-evaluation algorithms, which fill a gap in this collection of algorithms. Second, we perform an empirical comparison to elicit which of these new linear TD methods should be preferred in different situations, and make concrete suggestions about practical use.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for Fast Gradient Temporal Difference Learning

Temporal difference learning is one of the oldest and most used techniques in reinforcement learning to estimate value functions. Many modifications and extension of the classical TD methods have been proposed. Recent examples are TDC and GTD(2) ([Sutton et al., 2009b]), the first approaches that are as fast as classical TD and have proven convergence for linear function approximation in onand ...

متن کامل

Fast Gradient-Descent Methods for Temporal-Difference Learning with Linear Function Approximation

Sutton, Szepesvári and Maei (2009) recently introduced the first temporal-difference learning algorithm compatible with both linear function approximation and off-policy training, and whose complexity scales only linearly in the size of the function approximator. Although their “gradient temporal difference” (GTD) algorithm converges reliably, it can be very slow compared to conventional linear...

متن کامل

Experimental analysis of eligibility traces strategies in temporal difference learning

Temporal difference (TD) learning is a model-free reinforcement learning technique, which adopts an infinite horizon discount model and uses an incremental learning technique for dynamic programming. The state value function is updated in terms of sample episodes. Utilising eligibility traces is a key mechanism in enhancing the rate of convergence. TD(λ) represents the use of eligibility traces...

متن کامل

Predictive State Temporal Difference Learning

We propose a new approach to value function approximation which combines linear temporal difference reinforcement learning with subspace identification. In practical applications, reinforcement learning (RL) is complicated by the fact that state is either high-dimensional or partially observable. Therefore, RL methods are designed to work with features of state rather than state itself, and the...

متن کامل

Control of Multivariable Systems Based on Emotional Temporal Difference Learning Controller

One of the most important issues that we face in controlling delayed systems and non-minimum phase systems is to fulfill objective orientations simultaneously and in the best way possible. In this paper proposing a new method, an objective orientation is presented for controlling multi-objective systems. The principles of this method is based an emotional temporal difference learning, and has a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016